Линия очерчивающая профиль зуба это

Обновлено: 26.09.2022

Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния

При высоких угловых скоростях вращения рекомендуется применять косозубые шестерни, в которых зубья входят о зацепление плавно, что и обеспечивает относительно бесшумную работу.
Недостатком косозубых шестерен является наличие осевых усилий, которые дополнительно нагружают подшипники. Этот недостаток можно устранить, применив сдвоенные шестерни с равнонаправленными спиралями зубьев или шевронные шестерни.
Шевронные шестерни, ввиду высокой стоимости и трудности изготовления применяются сравнительно редко — лишь для уникальных передач большой мощности.
При малых угловых скоростях вращения применяются конические прямозубые шестерни, при больших — шестерни с круговым зубом, которые в настоящее время заменили конические косозубые шестерни, применяемые ранее.
Конические гипоидные шестерни тоже имеют круговой зуб, однако оси колес в них смещены, что создает особенно плавную и бесшумную работу. Передаточное отнесение в зубчатых парах колеблется в широких пределах, однако обычно оно равно 3 — 5

Основные определения из теории зацепления шестерен

Начальными называются воображаемые окружности, которые при зацеплении шестерен катятся без скольжения одна по другой

Делительными называются воображаемые окружности, по которым происходит номинальное деление зубьев. Для них справедливо уравнение:
d д = mZ
Если шестерни не имеют коррекции, то начальные и делительные окружности совпадают

Окружностями выступов и впадин называются окружности, ограничивающие вершины и впадины зубьев

Основными называются окружности, по которым развертываются эвольвенты, очерчивающие профили зубьев
d 0 = d д cosα

Шагом t называется расстояние по дуге делительной окружности между одноименными профилями соседних зубьев

Основным шагом t 0 называется шаг по основной окружности

Модулем называется отношение диаметра делительной окружности к числу зубьев или шага к π

Ритчем р называется число зубьев, приходящееся на один дюйм делительной окружности

Линией зацепления ЛЗ называется геометрическое место точек контакта зубьев в зацеплении. В эвольвентном зацеплении ЛЗ — прямая, нормальная к профилю зубьев в полюсе зацепления и касательная к основным окружностям

Углом зацепления α называется угол между линией зацепления и перпендикуляром к линии центров

Углом наклона спирали зубьев косозубых шестерен β называется угол между осью зуба и образующей делительного цилиндра или конуса

Коэффициентом перекрытия ε называется отношение дуги зацепления к основному шагу

Коэффициентом коррекции ξ называется отношение величины профильного смещения к модулю

Материал и термообработка шестерен

Стальные шестерни изготавливаются из качественных и легированных сталей с термообработкой.
Наибольшее распространение получили: для серийного производства — улучшение; для серийного и массового — цементация и закалка (при наличии соответствующего оборудования — закалка токами высокой частоты)

Термообработка Твердость Материал Примечания
Улучшение (закалка до малой твердости) НB
260-300
Сталь 40
Сталь 45
Cталь 40X
Сталь 45Х
Окончательная нарезка зубьев после термообработки во избежание коробления
Закалка HRC
40-50
Сталь 40Х
Сталь 40ХН
Необходима шлифовка зубьев по профилю для устранения коробления
Цементация и закалка HRC
56-63
Сталь 20Х
Сталь 18ХГТ
12ХНЗА
20ХНЗА
18ХНЗА
Окончательная обработка зубьев до термообработки. Коробление невелико
Закалка ТВЧ НRC
50-60
Сталь 45
Сталь 40Х
Только для крупных шестерен с модулем > 8

Расчетные геометрические зависимости

Прямозубые и косозубые цилиндрические шестерни

Передаточное отношение i :

где, f 0 — коэффициент высоты зуба; t и m — нормальный шаг и модуль; t s и m s — торцевой шаг и модуль; β — угол спирали зуба

Ряд наиболее распространенных стандартных модулей:
… 1; 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 6; 7; 8; 10; 12 …
Стандартный угол зацепления α — 20°. Для бесшумной и плавной работы косозубых шестерен необходимо перекрытие зубьев: последующий зуб должен входить в зацепление раньше, чем выйдет из зацепления предыдущий

Прямозубые конические шестерни

Все o6paзующие зубьев сходятся в одной точке пересечения осей. Номинальный делительный диаметр, шаг и модуль отсчитываются по большому основанию делительного конуса

Передаточное отношение i:


Средний диаметр и модуль:

где, m c — средний модуль;
L — конусное расстояние — длина образующей делительного конуса;
b — ширина зубьев шестерен;
γ — углы конусности

Силы, действующие в зацеплении шестерен

Прямозубые цилиндрические шестерни

Нормальная сила, действующая по линии зацепления, разлагается на две составляющие силы:
P = P ncosα — окружное усилие;
R = P nsinα — радиальное усилие

На валы действуют те же силы, что и на зубья шестерен, и, кроме того, еще крутящий момент:

Косозубые цилиндрические шестерни

Здесь, вследствие наклона зубьев к образующей, дополнительно возникает еще осевое усилие
окружное усилие

Силы P, R, A необходимо определить для расчета валов и подшипников, сила P n необходима для расчета зубьев шестерен на прочность. Силу A можно уравновесить, применив сдвоенные косозубые шестерни с разнонаправленными спиралями зубьев или шевронные

Конические прямозубые шестерни

Осевое усилие для шестерни или радиальное для колеса: Aш = Rк = R sinγш = P tgα sinγш
Радиальное усилие для шестерни или осевое для колеса: Rш = Aк = R cosγш = P tgα cosγш
Нормальное усилие:

Силы Р, Aш, Rш — для расчета валов и подшипников, cила Рn — для расчета зубьев на прочность;
dэ, Zэ — диаметры и числа зубьев эквивалентных цилиндрических колес

Воображаемые эквивалентные цилиндрические колеса строятся в плоскости мгновенного зацепления основных конических колес так, что оси тех и других совпадают. Работают эти колеса точно так же, как и основные конические, поэтому такое построение удобно использовать для выяснения действующих сил и напряжений в конических колесах

Дефекты шестерен

Закрытыми называются передачи, заключенные в пыленепроницаемый закрытый корпус, с организованной смазкой.
Открытыми называются передачи, не защищенные от пыли, с нерегулярной смазкой

Износ поверхностей зубьев — очень значительный в открытых передачах и небольшой в закрытых. Меры борьбы с износом — повышение поверхностной твердости зубьев

Питинг — поверхностное выкрашивание зубьев в зоне полосной линии. Возникает вследствие усталости поверхностного слоя зубьев в результате высоких контактных напряжений. Питинг начинается с образования усталостных микротрещин, которые под влиянием циклических нагрузок постепенно развиваются, чему способствует высокое давление масла в зоне контакта зубьев. В открытых передачах питинг обычно не возникает, так как микротрещины изнашиваются раньше, чем успеют развиться.
Меры борьбы с питингом заключаются в повышении жесткости корпусов, валов и опор и точности их изготовления с целью увеличения площадок контакта зубьев

Усталостная изгибная поломка зубьев.
Меры борьбы — увеличение модуля или улучшение качества материала и термообработки

Задиры поверхностей зубьев могут иметь место в тихоходных сильно нагруженных передачах.
Меры борьбы — применение противозадирных смазок, содержащих животные жиры и графит

Расчет зубьев цилиндрических прямозубых шестерен

Расчет на контактную прочность поверхности зубьев

Расчет базируется на известной формуле Герца для контактного сжатия цилиндров с параллельными осями:

Характерными особенностями контактного сжатия являются:
а) весьма ограниченная площадь контакта я а связи с этим высокие напряжения;
б) объемный характер напряженного состояния;
в) эллиптическая эпюра контактных напряжений, распространяющаяся только на зону контакта
Теоретически интенсивность нагрузки:

Выразим r м и r к через межцентровое расстояние А:

В действительности расчетная интенсивность нагрузки будет отличаться от теоретической на величину поправочных коэффициентов Кк и Кд

Здесь: Кк — коэффициент концентрации нагрузки, выражающий неполноту контакта по линии. Он зависит от деформации валов и ширины шестерен. Кд — коэффициент динамичности нагрузки, зависящий от окружной скорости и чистоты обработки поверхности зубьев.

Приведенная кривизна зубьев шестерен в точке контакта

(Знак минус для внутреннего зацепления).

Здесь: ρш и ρк — мгновенные радиусы кривизны в полосе зацепления

Приведенный модуль упругости:

Здесь: Еш и Ек — модули упругости материала шестерни и колеса.

Если обе шестерни изготовлены из одного материала, то в формулу подставляется:

Подставляя в основную формулу все величины, получим

Выразив крутящий момент на оси колеса через мощность в кВт:

Получаем проверочную формулу в окончательном виде:

По этой формуле можно проверить и сравнить с допускаемыми, действующие в данной передаче, контактные напряжения.

Для проектного расчета эта формула преобразуется, для чего ширина шестерни выражается через межцентровое расстояние.

Коэффициент относительной ширины

Для редукторов в среднем ψ = 0,2 ÷ 0,4.
Для коробок передач ψ = 0,1 ÷ 0,2.
Здесь: b — ширина шестерни в см;
А — межцентровое расстояние в см;
nк — число оборотов в минуту вала колеса;
N — мощность на валу колеса в кВт;
[σ] — допускаемое контактное напряжение.
По полученной величине межцентрового расстояния можно подобрать модуль, задавшись числом зубьев малой шестерни Zш = 17 — 25 (с коррекцией Z ≥ 14)

Определение допускаемых контактных напряжений

При циклических нагрузках допускаемые напряжения зависят не только от материала и термообработки, но также и от числа циклов нагружения (времени работы), которое в формуле фигурирует в виде коэффициента режима нагрузки Кр

[σ]к = [σ]таб Кр
где [σ]таб — табличное допускаемое напряжение;
[σ]таб = С1 НВ — для улучшенных сталей;
[σ]таб = С2 HRC — для цементированных и закаленных сталей.
Здесь: С1 и С2 — табличные коэффициенты, зависящие от принятого материала и термообработки.
При постоянном режиме нагрузки:

Nц = 60nt – число циклов нагружения

При переменном режиме нагрузки:

где Mi, ni, ti — крутящий момент, число оборотов и время работы в часах на каждой ступени усредненного графика нагрузки.
Минимальные значения Кp ограничены наступлением длительного предела выносливости. Для улучшенных сталей Кp ≥ 1, для цементированных и закаленных сталей Кp ≥ 0,59

Расчет на усталостный изгиб зубьев

Опасным нагружением считается такое, которое соответствует моменту начала входа зуба в зацепление. Интенсивность нагрузки q p создает две составляющие, из которых одна сжимает, а другая нагибает зуб.
Опасным сечением считается сечение у корня зуба со стороны растянутых волокон, так как закаленные стальные зубья слабее сопротивляются растяжению, чем сжатию
αl — угол зацепления при вершине зуба

Здесь: y — коэффициент формы зуба; определяется по таблицам или графикам в зависимости от числа зубьев и коэффициента коррекции (если она есть).
Подставив значение q, введенное ране, получаем проверочную формулу:

Для проектных расчетов формула преобразуется с введением коэффициента относительной модульной ширины шестерни:

Выражая величины А и b через модуль, получаем проектную формулу:

Обычно шестерни закрытых передач рассчитываются на контактную прочность (опасным является питинг) и проверяются на изгиб; шестерни открытых передач, для которых питинг не опасен, рассчитываются только на изгиб

Определение допускаемых напряжений изгиба

Допускаемые напряжения определяются как часть от предела усталости (выносливости) материала при симметричном цикле нагружения

для нереверсивных передач

для реверсивных передач

Здесь: n1 — коэффициент запаса прочности по пределу усталости, Кσ — коэффициент концентрации напряжений у ножки зуба, Kрн — коэффициент режима нагрузки по изгибу, можно принимать его равным 1 для большинства передач (только для очень тихоходных передач он может быть больше единицы)

Особенности расчета косозубых цилиндрических шестерен

Принципиально расчетные формулы для косозубых шестерен те же, что и для прямозубых, отличие заключается в следующем:

Оценочный параметр Прямозубые Косозубые
Нагрузка на зуб
Длина контактных линий

Особенности расчета конических прямозубых шестерен

Конические шестерни рассчитываются как эквивалентные им цилиндрические.
Окружное усилие определяется по среднему диаметру, расчетным является средний модуль. При определении коэффициента формы зуба принимается эквивалентное число зубьев

Коррекция зубьев шестерен

В целях уменьшения габаритов и веса машин желательно у малых шестерен число зубьев делать минимальным, однако этому препятствует подрез ножки зуба, который для эвольвентного двадцатиградусного зацепления имеет место при Z < 17 зубьев. Вводя коррекцию (теоретическое исправление профиля), можно уменьшить Zmin до 14 зубьев и даже менее

Угловая коррекция (фау-коррекция) заключается в смещении профиля зубьев малой шестерни в плюс (от центра) на величину:
V = ξ m
где ξ — коэффициент коррекции

При этом увеличивается на величину V межцентровое расстояние, а также угол зацепления, так как при раздвижке центров раздвигаются соответственно и основные окружности, к которым касательна линия зацепления

Высотная коррекция (фау-нуль-коррекция), при которой профиль зубьев малой шестерни смещается в плюс (+V), а профиль зубьев колеса на столько же — в минус (-V). При этом межцентровое расстояние и угол зацепление не меняются, изменяются лишь относительная высота головки и ножки зубьев.
Изготовление корригированных шестерен не представляет никаких трудностей

КПД зубчатых передач

Для закрытых передач в среднем:
цилиндрических η =0,98
конических η = 0,97
Для открытых передач:
цилиндрических η = 0,97
конических η = 0,96
Эти цифры включают также потери в опорах качения, которые невелики и составляют от 0,25 до 0,5 % на опору при надежной смазке

petr-m

Урок посвящен построению зубчатого колеса с эвольвентным профилем зуба. Урок состоит из двух частей. В первой части выложена теория, формулы для расчета и один из способов графического построения эвольвентного профиля зуба.
Во второй части (видео) показан способ построения модели зубчатого колеса с использованием графических построений в первой части урока.

Часто задаваемые вопросы:

*Что такое эвольвента (эволюта)?
*Как построить эвольвенту?
*Как построить зубчатое колесо в программе SolidWorks?
*Формулы для расчета зубчатого колеса?
*Как нарисовать эвольвентный профиль зуба зубчатого колеса?

Итак, начнем с теории.

Эвольвентное зацепление позволяет передавать движение с постоянным передаточным отношением. Эвольвентное зацепление - зубчатое зацепление, в котором профили зубьев очерчены по эвольвенте окружности.
Для этого необходимо чтобы зубья зубчатых колёс были очерчены по кривой, у которой общая нормаль, проведённая через точку касания профилей зубьев, всегда проходит через одну и туже точку на линии, соединяющей центры зубчатых колёс, называемую полюсом зацепления.

Эвольвента – геометрическое место точек прямой, катящейся без скольжения по окружности, называемой эволютой.


Параметры зубчатых колёс

Основной теореме зацепления удовлетворяют различные кривые, в том числе эвольвента и окружность, по которым чаще всего изготавливают профили зубьев зубчатого колеса.

В случае, если профиль зуба выполнен по эвольвенте, передача называется эвольвентной.

Для передачи больших усилий с помощью зубчатых механизмов используют зацепление Новикова, в котором профиль зуба выполнен по окружности.

Окружности, которые катятся в зацеплении без скольжения друг по другу, называются начальными (D).

Окружности, огибающие головки зубьев зубчатых колёс, называются окружностями головок (d1).

Окружности, огибающие ножки зубьев зубчатых колёс, называются окружностями ножек (d2).

Окружности, по которым катятся прямые, образующие эвольвенты зубьев первого и второго колёс, называются основными окружностями.

Окружность, которая делит зуб на головку и ножку, называется делительной окружностью (D).

Для нулевых (некорригированных) колёс начальная и делительная окружности совпадают.

Расстояние между одноимёнными точками двух соседних профилей зубьев зубчатого колеса называется шагом по соответствующей окружности.


Шаг можно определить по любой из пяти окружностей. Чаще всего используют делительный шаг p =2r/z, где z – число зубьев зубчатого колеса. Чтобы уйти от иррациональности в расчётах параметров зубчатых колёс, в рассмотрение вводят модуль, измеряемый в миллиметрах, равный



Модуль зубчатого колеса, геометрический параметр зубчатых колёс. Для прямозубых цилиндрических зубчатых колёс модуль m равен отношению диаметра делительной окружности (D) к числу зубьев z или отношению шага p к числу "пи" .


Модуль зубчатого колеса стандартизованы, что является основой для стандартизации других параметров зубчатых колёс.

Основные формулы для расчета эвольвентного зацепления:

Исходными данными для расчета как эвольвенты, так и зубчатого колеса являются следующие параметры: m - Модуль - часть диаметра делительной окружности приходящаяся на один зуб. Модуль - стандартная величина и определяется по справочникам. z - количество зубьев колеса. ? ("альфа") - угол профиля исходного контура. Угол является величиной стандартной и равной 20°.

Делительный диаметр рассчитывается по формуле:

Диаметр вершин зубьев рассчитывается по формуле:

d1=D+2m

Диаметр впадин зубьев рассчитывается по формуле:

d2=D-2*(c+m)

где с - радиальный зазор пары исходных контуров. Он определяется по формуле:

с = 0,25m

Диаметр основной окружности, развертка которой и будет составлять эвольвенту, определяется по формуле:

d3 = cos ? * D

От автора. Я нашел в интернете полезную программку в Excel 2007. Это автоматизированная табличка для расчета всех параметров прямозубого зубчатого колеса.

Итак, приступим к графическому построению профиля зубчатого колеса.


  1. Изобразите делительный диаметр с диаметром D, и центром шестерни O. Окружность показана красным цветом.
  2. Изобразите диаметр вершин зубьев (d1) с центром в точке O с радиусом большим на высоту головки зуба(зелёного цвета).
  3. Изобразите диаметр впадин зубьев (d2) с центром в точке O с радиусом меньшим на высоту ножки зуба (голубого цвета цвета).


  1. Проведите касательную к делительному диаметру (желтая).
  2. В точке касания под углом ? проведите линию зацепления, оранжевого цвета.
  3. Изобразите окружность касательную к линии зацепления, и центром в точке O. Эта окружность является основной и показана тёмно синего цвета.



  1. От точки C проведите касательную к основной окружности.
  2. В точке касания отметьте точку D.
  3. Разделите расстояние DC на четыре части и отметьте, точкой E, полученное значение от точки D в сторону точки C на отрезке DC.


  1. Изобразите дугу окружности с центром в точке E, что проходит через точку C. Это будет часть одной стороны зуба, показана оранжевым.
  2. Изобразите дугу окружности с центром в точке H, радиусом, равным толщине зуба (s). Место пересечения с делительным диаметром отметьте точкой F. Эта точка находится на другой стороне зуба.


  1. Изобразите ось симметрии проходящую через центр О и середину расстояния FH.
  2. Линия профиля зуба отображенная зеркально относительно этой оси и будет второй стороной зуба.


Вот и готов профиль зуба прямозубого зубчатого колеса. В этом примере использовались следующие параметры:

На этом первая часть урока является завершенной. Во второй части (видео) мы рассмотрим как применить полученный профиль зуба для построения модели зубчатого колеса. Для полного ознакомления с данной темой ("зубчатые колеса и зубчатые зацепления", а также "динамические сопряжения в SolidWorks") необходимо вместе с изучением этого урока изучать урок №24.

Еще скажу пару слов о специальной программе, производящей расчет зубчатых колес и генерацию модели зубчатого колеса для SolidWorks. Это программа Camnetics GearTrax.


Эвольвентное зацепление зубчатых колес удовлетворяет основному закону зацепления, обеспечивает постоянство передаточного отношения, допускает отклонение межосевого расстояния зубчатых передач и точно стандартизируется.

Подавляющее большинство зубчатых передач, применяемых в технике, имеет зубчатые колеса с эвольвентным профилем.

Эвольвента как кривая для формирования профиля зуба была предложена Л. Эйлером. Она обладает значительными преимуществами перед другими кривыми, применяемыми для этой цели, – удовлетворяет основному закону зацепления, обеспечивает постоянство передаточного отношения, нечувствительна к неточностям межосевого расстояния (что облегчает сборку), наиболее проста и технологична в изготовлении, легко стандартизируется (что особенно важно для такого распространенного вида механизмов как зубчатые передачи).

На следующем видео показан пример эвольвентного зацепления зубчатых колес

Эвольвента – это траектория движения точки, принадлежащей прямой, перекатывающейся без скольжения по окружности. Данная прямая называется производящей прямой, а окружность, по которой она перекатывается – основной окружностью (рисунок 38 а).

производящая прямая

эвольвентный угол

Эвольвента обладает следующими свойствами, которые используются в теории зацепления:

  1. форма эвольвенты определяется радиусом основной окружности;
  2. нормаль к эвольвенте в любой ее точке является касательной к основной окружности. Точка касания нормали с основной окружностью является центром кривизны эвольвенты в рассматриваемой точке;
  3. эвольвенты одной и той же основной окружности являются эквидистантными (равноотстоящими друг от друга) кривыми.

Положение любой точки на эвольвенте может быть однозначно охарактеризовано диаметром окружности, на которой она расположена, а также характерными для эвольвенты углами: углом развернутости (обозначается ν ), углом профиля ( α ), эвольвентным угломinv α (рисунок 38 б). На рисунке 38 б показаны эти углы для произвольно выбранной на эвольвенте точки Y, поэтому они имеют соответствующий индекс:

  • ν Y – угол развернутости эвольвенты до точки у;
  • α Y – угол профиля в точке Y;
  • inv α Y – эвольвентный угол в точке Y (на окружности диаметра dY ).

То есть индекс показывает, на какой окружности находится рассматриваемая точка эвольвенты, поэтому для характерных окружностей используются индексы, приведенные выше.

Например: α a1 – угол профиля эвольвенты в точке, лежащей на окружности вершин первого колеса;
inv α – эвольвентный угол в точке эвольвенты, находящейся на делительной окружности колеса и т.д.

Рассмотрим свойства эвольвенты. Первое свойство имеет строгое математическое доказательство, однако в рамках данного короткого курса оно не приводится.

Так как при формировании эвольвенты производящая прямая перекатывается по основной окружности без скольжения, то в данный момент времени она вращается вокруг точки N (N – мгновенный центр скоростей), описывая бесконечно малую дугу окружности, которая и определяет кривизну эвольвенты в данной точке. Т.е. отрезок NY – это радиус кривизны эвольвенты в точке Y (NY= ρ Y).

Но отрезок NY в точности равен дуге NY0 (это та же дуга только вытянутая в прямую линию). Таким образом, имеем:


Чем больше радиус основной окружности, тем больше радиус кривизны эвольвенты в любой ее точке (то есть форма эвольвенты действительно определяется величиной радиуса основной окружности).

Второе свойство также легко просматривается. Так как N – мгновенный центр скоростей, то скорость точки Y перпендикулярна радиусу NY. Но скорость точки, движущейся по криволинейной траектории, направлена по касательной к этой траектории – в данном случае по касательной к эвольвенте в точке Y.

Перпендикуляр к касательной – есть нормаль, поэтому прямая YN с одной стороны является нормалью к эвольвенте в точке Y, с другой стороны является касательной к основной окружности (как производящая прямая, перекатывающаяся по основной окружности).

То, что точка N является центром кривизны эвольвенты в точке Y, показано при рассмотрении первого свойства. Запишем некоторые зависимости, которые используются в дальнейшем при изучении геометрии эвольвентного зацепления (получаются из рассмотрения рисунка 38 б):


Третье свойство эвольвенты очевидно из рисунка 38а. Действительно, если на производящей прямой взять две точки (А и В), то они будут описывать две совершенно одинаковых эвольвенты, причем, как бы не перемещалась производящая прямая, расстояние между этими точками не изменяется (AiBi = Const). Т.е. действительно это эквидистантные (равноотстоящие друг от друга) кривые. Но, самое важное, что это расстояние AiBi равно расстоянию между этими эвольвентами, измеренному по дуге основной окружности:


Признаком того, что два криволинейных профиля касаются (а не пересекаются), является наличие у них в точке контакта общей нормали. В связи с этим контакт двух эвольвентных профилей происходит на общей касательной к основным окружностям N1N2 (рисунок 39), которая одновременно будет являться общей нормалью к этим профилям в точке их касания в любой момент времени (на основании второго свойства эвольвенты).

контакт двух эвольвентных профилей

Геометрическое место точек контакта профилей, которое они занимают в процессе работы пары зубьев, называется линией зацепления. Таким образом, в эвольвентной передаче линией зацепления является прямая N1N2 (общая касательная к основным окружностям).

На рисунке 39 а показано зацепление двух эвольвентных профилей в разные моменты времени. В обоих положениях прямая N1N2 является общей нормалью к этим касающимся профилям и проходит через полюс зацепления W (мгновенный центр относительного вращения).

Это, с одной стороны показывает, что эвольвентные профили удовлетворяют основному закону зацепления, с другой стороны обеспечивают постоянство передаточного отношения, т.к. полюс зацепления не меняет своего положения в процессе работы пары (отношение O2W/O1W остается постянным).

С изменением межосевого расстояния будет меняться только положение линии зацепления, но вся картина зацепления останется такой же, т.е. по-прежнему будет сохраняться основной закон зацепления, величина и постоянство передаточного отношения. Это очень важное свойство эвольвентного зацепления, т.к. позволяет вписывать передачу в разные межосевые расстояния, что особенно важно при проектировании коробок скоростей, планетарных и дифференциальных механизмов.

Передача оказывается малочувствительной к неточностям межосевого расстояния, что позволяет снизить требования к точности сборки.

Угол между линией зацепления и общей касательной к начальным окружностям в полюсе называется углом зацепления. Угол зацепления, угол профиля на начальной окружности первого колеса и угол профиля на начальной окружности второго колеса равны между собой w1w2w) , поэтому все они обозначаются одинаково – αw (без числового индекса – см. рисунок 39 а).

Отрезок N1N2 называется теоретической линией зацепления. На этом участке происходит нормальная работа двух неограниченных эвольвент.

В реальной передаче эвольвенты ограничены («обрезаны») окружностями вершин, поэтому вся работа пары происходит на участке линии зацепления P1P2, заключенном между окружностями вершин (рисунок 39б).

Отрезок P1P2 называется рабочей (активной) частью линии зацепления (иногда называют просто «рабочая линия зацепления», или «активная линия зацепления»). На рисунке 39б показано два положения одной и той же пары: в начале зацепления (зуб ведомого колеса работает своей вершиной, зуб ведущего колеса – нижней рабочей точкой профиля Р1), и в конце зацепления (зуб ведущего колеса работает своей вершиной и в следующий момент выйдет из зацепления, зуб ведомого колеса работает своей нижней рабочей точкой профиля Р2).

Примечание: здесь термин «нижняя» или «верхняя» точка относится к положению точек относительно основной окружности, независимо от того, как эти точки располагаются одна относительно другой в пространстве. Из двух рассматриваемых точек профиля «нижней» будет та, которая располагается ближе к основной окружности.

При увеличении радиуса основной окружности до бесконечности радиус кривизны эвольвенты в любой ее точке также становится бесконечно большим, т.е. основная окружность и эвольвента превращаются в прямые линии. Эвольвентное зубчатое колесо превращается в зубчатую рейку с прямолинейным профилем зуба.

Таким образом, рейка с прямолинейным профилем зуба представляет собой частный случай эвольвентного зубчатого колеса и обладает всеми его свойствами, т.е. может работать с любым эвольвентным колесом (при одном и том же модуле) без нарушения основного закона зацепления. При этом вращательное движение колеса преобразуется в поступательное движение рейки или поступательное движение рейки преобразуется во вращательное движение колеса с соблюдением постоянства передаточного отношения.

Т.к. зубчатая рейка с прямолинейным профилем зуба с одной стороны имеет простые формы и легко задать размеры ее элементов, с другой стороны представляет собой эвольвентное зубчатое колесо, то ее параметры положены в основу стандартизации эвольвентных зубчатых колес. Стандартная зубчатая рейка называется исходным контуром (рисунок 40а).

Стандартная зубчатая рейка

Имеется несколько стандартов на исходные контуры, учитывающие специфику некоторых видов передач (мелкомодульных, конических и т.д.). В основном используются параметры, определенные ГОСТ 13 755 – 81.

В соответствии с этим стандартом исходный контур имеет следующие параметры:

  • α = 20 0 – угол профиля исходного контура (основной параметр, определяющий ряд эвольвент, используемых для зубчатых передач в соответствии с этим стандартом, поэтому часто в конструкторской практике говорят, что у нас в стране используется «двадцатиградусная» эвольвента);
  • ha * = 1 – коэффициент высоты головки зуба;
  • c*= 0,25 – коэффициент радиального зазора (по другим стандартам в зависимости от модуля и типа инструмента с* может быть равен 0,2; 0,3; 0,35);

Приведенные коэффициенты являются безразмерными величинами. Абсолютное значение какого-либо размера получается умножением соответствующего коэффициента на модуль (Например: высота головки зуба ha=ha * ∙m; величина радиального зазора c = c*∙m и т. д.).

Таким образом, форма зуба остается постоянной, а абсолютные размеры определяются модулем (т.е. модуль является как бы коэффициентом пропорциональности).

По высоте зуб исходного контура делится на головку и ножку. Это деление осуществляется делительной прямой. Делительная прямая рейки – это прямая, на которой толщина зуба равна ширине впадины (рисунок 40б).

Высота ножки зуба несколько больше головки для обеспечения радиального зазора между вершинами зубьев одного колеса и окружностью впадин другого после сборки передачи.

Стандартные параметры исходного контура на эвольвентное колесо «переносятся» через делительную окружность (на делительной окружности шаг равен стандартному шагу исходного контура p= π ∙ m, угол профиля равен углу профиля исходного контура α = 20 0 ).


Геометрические показатели качества зацепления зубчатых колес показывают совокупность линий в системе координат и для определенной передачи представляют собой замкнутый контур, отделяющий разрешенную зону для выбора коэффициентов смещения от запрещенной.

При проектировании зубчатой передачи необходимо проверить геометрические показатели, которые могут привести к неудовлетворительной ее работе.

К ним относятся:

— коэффициент перекрытия. Коэффициентом перекрытия называется отношение дуги зацепления к шагу зацепления на той же окружности (дуга зацепления – это путь, проходимый точкой зуба по дуге окружности за время работы данной пары – на рисунке 39б показана дуга зацепления по основной окружности – b1b2).

Если дуга зацепления окажется меньше шага, то при выходе из зацепления одной пары зубьев следующая не вступит в зацепление. Нарушается преемственность в работе пар, передача работает с ударами и быстро выходит из строя. Поэтому коэффициент перекрытия должен быть больше или, в крайнем случае, равен единице.

Чем больше коэффициент перекрытия, тем более плавной будет работа передачи. На основании третьего свойства эвольвенты рабочая часть линии зацепления Р1Р2 равна дуге зацепления на основной окружности (рисунок 39б), а расстояние между работающими профилями двух соседних зубьев, измеренное по линии зацепления равно основному шагу. Поэтому коэффициент перекрытия можно вычислить как отношение отрезка Р1Р2 к основному шагу рВ (рисунок 43):


линия зацепления

После преобразований получаем:


В этой формуле αa1 и αa2 – углы профиля на окружности вершин первого и второго колеса соответственно. Определяются через функцию косинуса:


Рекомендуется принимать следующие значения допускаемого коэффициента перекрытия:

[ ε ]=1,05…1,1 – для неответственных передач,
[ ε ]=1,2 – для ответственных передач.

При нарезании колес стандартным инструментом реечного типа коэффициент перекрытия в цилиндрической передаче не может превышать значения 1,88. То есть в реальных передачах значения коэффициента перекрытия располагаются в интервале 1,05…1.8. Это означает, что какую-то часть времени работают две пары зубьев одновременно, какую-то – одна пара зубьев.

В тот момент времени, когда пара зубьев входит в зацепление в точке Р1, предыдущая пара находится от нее на расстоянии основного шага в точке “v” линии зацепления (рисунок 43). С этого момента в зацеплении находятся две пары (и делят передаваемую нагрузку между собой). Когда предыдущая пара подойдет к точке Р2, то следующая пара будет располагаться в точке» u” (на расстоянии основного шага от точки Р2).

В следующий момент предыдущая пара выйдет из зацепления, а следующая войдет в зону ”uv” и будет воспринимать всю нагрузку целиком. Пока пара находится в зоне “uv” никакая другая пара находиться в зацеплении не будет. Поэтому эта часть линии зацепления называется зоной однопарного зацепления. Часть профиля, которая работает в зоне однопарного зацепления, является наиболее напряженной частью этого профиля.

Чем больше коэффициент перекрытия, тем меньше зона однопарного зацепления, тем большую часть времени в зацеплении находятся две пары зубьев.

интерференция зубьев зубчатых колес. Профиль зуба состоит из двух характерных частей – из эвольвентной части, и переходной кривой, плавно сопрягающей эвольвентную часть с окружностью впадин (рисунок 44 а).

интерференция зубьев зубчатых колес

Если рабочая часть профиля располагается целиком на его эвольвентной части, то происходит нормальная работа зубьев без нарушения основного закона зацепления (рисунок 44 б). Если же нижняя точка Р рабочего участка окажется ближе к основной окружности, чем граничная точка l сопряжения эвольвенты с переходной кривой, то вершина зуба одного колеса будет стремиться к внедрению в переходную кривую второго (рисунок 44 в).

Вершина зуба одного колеса накладывается (на чертеже) на переходную кривую второго (как отмечалось выше, это явление называется интерференцией профилей). Нарушается основной закон зацепления, происходит заклинивание или поломка передачи. Интерференция отсутствует, если нижняя точка рабочего участка профиля зуба Р располагается на профиле выше граничной точки l .

Положение точки на эвольвенте можно задать через различные параметры (через диаметр, через угол профиля, через угол развернутости, через эвольвентный угол). Наиболее удобные формулы получаются через углы профиля в рассматриваемых точках (формула для определения угла профиля в граничной точке l приведена выше, формулы для определения угла профиля в точках Р1 и Р2 получаются из рассмотрения рисунка 39б):


Условие отсутствия интерференции:

  • на ножке зуба первого колеса
  • на ножке зуба второго колеса
  • заострение зубьев. Если расчетный диаметр вершин окажется больше диаметра окружности, на которой происходит пересечение встречных эвольвент, формирующих зуб, то фактический диаметр вершин окажется меньше расчетного (значит уменьшится коэффициент перекрытия), а зуб будет иметь острую вершину (рисунок 45а).

заострение зубьев

При приложении нагрузки к вершине будут возникать большие напряжения (теоретически площадь равна нулю), что приведет к смятию пластичного материала или к разрушению хрупкого материала у этой вершины. Поэтому при проектировании передачи необходимо обеспечить у зуба некоторую толщину на окружности вершин Sa>0 (рисунок 45 б).

При проверке на отсутствие заострения толщина зуба на окружности вершин сравнивается с допускаемой величиной:


Рекомендуется принимать следующие значения допускаемой толщины зуба на окружности вершин:

[Sa]=0,25m – для пластичных материалов;
[Sa]=0,40m – для хрупких материалов;

подрезание (подрез) зубьев. При определенных условиях инструмент начинает пересекать им же сформированную эвольвенту у основания зуба. Формируемая им переходная кривая в этом случае пересекает эвольвенту изнутри (а не плавно с ней сопрягается), а зуб становится более тонким (ослабленным) у основания. Это явление носит название подрезания или подреза зубьев (рисунок 45в).

Зубья с подрезом можно применять для несиловых передач, если оставшийся участок эвольвенты обеспечивает необходимый коэффициент перекрытия. Для силовых передач применять зубья с подрезом не рекомендуется. При применении стандартного инструмента реечного типа подрез зубьев происходит в том случае, когда верхняя точка прямолинейного участка профиля зуба рейки заходит за точку N линии зацепления (рисунок 41). Поэтому проверка на отсутствие очень простая:


Вероятность подреза повышается с уменьшением числа зубьев колеса. Если изготавливать колеса стандартным инструментом реечного типа без применения смещения, то подрез будет наблюдаться у колес с числом зубьев меньше 17 (Zmin=17), и чем меньше число зубьев, тем более значительным будет подрез. Однако, если правильно подобрать коэффициент смещения, то колесо с любым число зубьев можно нарезать без подреза. Подрез у колеса с заданным числом зубьев будет отсутствовать, если коэффициент смещения будет не меньше минимального:


Влиять на все указанные геометрические показатели качества зацепления можно правильным выбором коэффициентов смещения. Для рационального выбора коэффициентов смещения при проектировании передачи разработаны так называемые блокирующие контуры.

Так как показатели описываются соответствующими математическими зависимостями, то их можно представить в виде линий в определенной системе координат. Совокупность этих линий в системе координат (x1 – x2 ) для определенной пары колес (z1 – z2) представляет собой замкнутый контур, отделяющий разрешенную зону для выбора коэффициентов смещения (x1 и x2) от запрещенной.

Этот замкнутый контур и называется блокирующим контуром. Он позволяет конструктору спроектировать бесчисленное количество работоспособных передач с одинаковыми числами зубьев колес, но с различными свойствами.


Основной закон зацепления профилей зубьев колес зубчатых передач гласит: для нормальной безотрывной работы передачи, составленной из двух профилей, входящих в высшую кинематическую пару, необходимо, чтобы нормаль к этим профилям в точке контакта в любой момент времени проходила через мгновенный центр их относительного вращения.

Зубья зубчатых колес составляют высшую пару IV класса, т.е. представляют собой некоторые поверхности, находящиеся в контакте.

Таким образом, профили зубьев – это кривые (а в некоторых случаях прямые) линии.

два профиля, находящиеся в контакте в точке А

На рисунке 34 показаны два профиля, находящиеся в контакте в точке А. Скорость точки А, принадлежащей первому профилю (V1), перпендикулярна радиусу О1А, соответственно, скорость точки А, принадлежащей второму профилю (V2), перпендикулярна радиусу О2А.

Рассмотрим проекции этих скоростей на общую нормаль (N-N), проведенную к профилям в точке их контакта (С1 – проекция скорости V1 , С2 – проекция скорости V2). Могут получиться различные соотношения между значениями этих проекций:

  1. С2 > С1 – точка А, принадлежащая второму профилю (А2), в направлении нормали движется быстрее точки А, принадлежащей первому профилю (А1). Второй профиль «убегает» от первого, в следующий момент произойдет разрыв кинематической пары (нарушится контакт между звеньями);
  2. С1 > С2 – точка А1 в направлении нормали движется быстрее точки А2 (положение на рисунке 34 соответствует этому случаю), то есть точка А1 стремится к внедрению во второй профиль. Если вычертить следующее положение механизма, то первый профиль в области точки А будет накладываться на второй.
    В теории зацепления это явление носит название «интерференция профилей». В реальном механизме это приведет к заклиниванию или поломке передачи. Очевидно, что оба этих положения недопустимы – и разрыв кинематической пары, и, тем более, заклинивание и поломка делают передачу неработоспособной;
  3. С1 = С2 – условие нормальной безотрывной работы профилей.

Из рисунка 34 видно, что ΔAV1C1 подобен ΔO1AB1 , и, соответственно, ΔAV2C2 подобен ΔO2AB2 . Из подобия треугольников можно записать отношение сходственных сторон:


Здесь i12 – передаточное отношение от первого профиля ко второму (это отношение угловой скорости на входе к угловой скорости на выходе).

Из подобия треугольников O1B1W и O2B2W (W – точка пересечения общей нормали N-N с линией центров O1O2) получаем:


VW1 – скорость точки W, связанной с первым профилем,
VW2 – скорость точки W, связанной со вторым профилем.

Эти скорости совпадают не только по величине, но и по направлению (VW1 ⊥ O1W, VW2 ⊥ O2W, т.е. оба вектора перпендикулярны межосевому расстоянию O1O2).

Две точки совпадают по своему положению и имеют одинаковые скорости, то есть их относительная скорость равна нулю (VW1W2=0). Таким образом, точка W является мгновенным центром относительного вращения рассматриваемых профилей.

Исходя из вышеизложенного, можно следующим образом сформулировать условие работоспособности передачи, составленной из двух профилей, входящих в высшую кинематическую пару:

— для нормальной безотрывной работы профилей необходимо, чтобы нормаль к этим профилям в точке контакта в любой момент времени проходила через мгновенный центр их относительного вращения.
Это условие носит название основного закона зацепления.

Профили, удовлетворяющие основному закону зацепления, называются сопряженными, а кривые которыми они описаны являются взаимоогибаемыми кривыми. При работе передачи взаимоогибаемые кривые перекатываются друг по другу со скольжением. Геометрическое место мгновенных центров скоростей, связанных с первым и вторым колесами, являются центроидами.

При работе передачи центроиды касаются в мгновенном центре относительного вращения и перекатываются друг по другу без скольжения. При постоянном передаточном отношении центроиды представляют собой окружности, которые в теории зацепления называются начальными окружностями.

Таким образом, передачи с постоянным передаточным отношением – это передачи с круглыми колесами, которые используются в большинстве случаев практики. В этом случае мгновенный центр при работе передачи не меняет своего положения и называется полюсом зацепления.

Элементы зубчатого зацепления

Стандартами на зубчатое зацепление вводятся определенные обозначения параметров:

Z – число зубьев колеса;
d – диаметр;
h – высота;
p – шаг (расстояние между одноименными профилями зубьев, измеренное по дуге какой-либо окружности);
S – толщина зуба (также измеряется по дуге окружности);
e – ширина впадины между зубьями;
a – межосевое расстояние.
Вводятся также буквенные индексы, показывающие, к какой окружности относится параметр:
w – начальная окружность;
b (или B) – основная окружность;
a – окружность вершин;
f – окружность впадин;
Y – окружность произвольного радиуса;

Без буквенного индекса – делительная окружность. Делительная окружность – это окружность, на которой шаг (и угол профиля) является стандартным:


Как видно из формул, вносить в стандарт непосредственно значения шага неудобно, т.к. при этом диаметр делительной окружности всегда будет величиной иррациональной (при изготовлении круглых деталей измеряют диаметры, поэтому надо, чтобы именно диаметры имели удобную величину). Поэтому в стандарт вводится величина, характеризующая отношение шага к числу π , которая называется модулем зацепления ( обозначается «m» и представлена в стандарте в миллиметрах).

Таким образом, основные параметры делительной окружности определяются следующими формулами:


Модуль зацепления, с одной стороны обеспечивает условие взаимозаменяемости колес (работать в паре могут любые колеса одного модуля), с другой стороны определяет область применения зубчатых передач (передачи с m

Кроме буквенных индексов используются также индексы числовые. При расчете одной пары колес принято обозначать индексом «1» меньшее колесо пары (которое часто называют шестерней), индексом «2» – большее колесо.

Ниже приведены примеры обозначений параметров колес:

dw1, dw2 – диаметры начальных окружностей колес пары;
df1, df2 – диаметры окружностей впадин;
d1, d2 – диаметры делительных окружностей;
S1 – толщина зуба на делительной окружности первого колеса;
Sa2 – толщина зуба на окружности вершин второго колеса;
SY1 – толщина зуба на произвольно выбранной окружности;
ew1 – ширина впадины между зубьями на начальной окружности первого колеса;
haw1 – высота головки зуба первого колеса (часть зуба, расположенная вне начальной окружности);
hwf2 – высота ножки зуба второго колеса (часть зуба, расположенная внутри начальной окружности);
a – делительное межосевое расстояние (сумма радиусов делительных окружностей);
aw – межосевое расстояние (сумма радиусов начальных окружностей).

Следует обратить внимание на то, что шаги на начальных, делительных и основных окружностях для обоих колес пары одинаковы, поэтому в обозначениях этих параметров численный индекс отсутствует:

pw1=pw2=pw – шаг на начальной окружности;
p1=p2=p – шаг на делительной окружности;
pb1= pb2=pb – шаг на основной окружности (основной шаг).

Принятая система удобна, т.к. дает возможность по обозначению легко определить, что это за параметр и к чему он относится.

Читайте также: