Кислота для протравливания эмали зуба

Обновлено: 07.10.2022

Многие авторы отмечали, что снижение распространенности заболеваемости кариесом в экономически развитых странах в течение последних десятилетий связано с применением фторидов. При этом решающее значение имеет местное применение фторидов и, прежде всего, применение фторсодержащих зубных паст. Фторапатит имеет лишь незначительный потенциал защиты от кариеса, а растворенные в окружающей эмаль зуба жидкой среде фториды не только способствуют реминерализации, но и замедляют деминерализацию твердых тканей зуба. Исходя из того, что в период широкого местного применения фторидов снизилась распространенность заболевания кариесом, можно заключить, что регулярное применение соединений фтора способствует замедлению развития кариеса.

Введение

К твердым тканям зуба относятся эмаль, дентин и цемент. Эмаль представляет собой хорошо минерализированную ткань. По сравнению с эмалью дентин и цемент состоят в большей степени из органической матрицы. Минеральная составляющая твердых тканей зуба представляет собой не просто чистый гидроксиапатит (HAP = Ca10 (PO4)6(OH)2). Речь идет о биоматериале, в состав которого, кроме небольшой части ионов кальция, входят также многие другие ионы. Включение в кристаллическую решетку гидроксиапатита гидрофосфат-, карбонат-ионов или ионов магния приводит к образованию менее стабильного, легче растворяющегося апатита. Содержание карбоната в дентине (5,5 %) выше, чем в эмали (3 %), поэтому выше и растворимость в кислотах кристаллов, входящих в состав дентина. Частичная замена гидроксильных групп в кристаллической решетке на ионы фтора, может значительно стабилизировать структуру апатита.

В состав здоровой эмали зубов человека кроме гидроксиапатита входит также фторгидроксиапатит (FHAP) или фторапатит (FAP). При этом во внешнем слое эмали в среднем менее 5 % гидроксильных групп гидроксиапатита замещены на ионы фтора. В толще эмали, уже на глубине 50 мкм, содержание ионов фтора становится еще ниже.

В статье пойдет речь о роли фторидов в профилактике кариеса (Featherstone, 2000; Lussi, 2010) (табл. № 1) , а также будут даны практические рекомендации относительно их применения.

Таблица № 1. Патологические и защитные факторы, влияю­щие на равновесие между де- и реминерализацией.

Защитные факторы

Кальций, фосфат, фтор

Способствующие кариесу факторы

Кислотная «атака»

Эмаль зуба представляет собой гидроксиапатит с небольшим содержанием кальция и высоким содержанием карбонатов. В стабильном состоянии в непосредственном окружении кристаллов эмалевых призм имеется достаточное количество ионов Ca2+-, PO43–-, OH–- и F–, поэтому кристаллы, входящие в состав эмали, находятся в химическом равновесии с окружающей их жидкостью. Активные концентрации (активность) этих ионов определяют степень насыщенности раствора. При недостаточном насыщении раствора кристаллы гидроксиапатита растворяются, а в более благоприятной ситуации, при перенасыщении раствора, минеральные вещества поступают из окружающей среды в эмаль зуба. При кариесогенной кислотной «атаке» в результате жизнедеятельности бактерий зубного налета (бактериальной бляшки) из углеводов образуются органические кислоты. При диссоциации этих кислот освобождаются ионы H+.

В результате повышения концентрации ионов H+ (низкий показатель рН) снижается содержание гидроксид-ионов (OH–) в окружающей зуб жидкости бактериальной бляшки. Кроме того, ионы H+ в тканевой жидкости бляшки преобразуют фосфат-ионы (PO43–) в гидрофосфат-ионы (НPO42–), а в большей степени, в ионы Н2PO4– (Dawes, 2003). Следовательно, при более низком показателе рН среды уменьшается концентрация ионов PO43–. Для сохранения химического равновесия окружающего поверхность эмали раствора из тканей зуба выделяются фосфат-ионы (PO43–), а затем и гидроксид-ионы (OH–). В результате для сохранения нейтральности среды из твердых тканей зуба выводятся ионы кальция, т. е. происходит растворение твердых тканей зуба (Dawes, 2003).

Динамика вышеописанного процесса убыли тканей зависит от следующих факторов:

  • химического состава кристаллов, входящих в состав эмали, дентина и цемента зуба;
  • состава окружающей зуб бактериальной бляшки.

Исходя из вышесказанного, можно объяснить различие критических показателей рН для эмали (5,5) или дентина (6,3), а также разную степень активности кариеса у различных пациентов. Степень активности кариеса зависит от содержания ионов кальция, фосфата и фтора в слюне или жидкости бляшки. На эти факторы также оказывают влияние частота употребления сахара и качество гигиены полости рта. Они играют еще более важную роль при возникновении кариеса.

Когда зубы, на которых нет налета, подвергаются хроническому воздействию кислот эндогенного или экзогенного характера, могут возникать эрозии эмали. Для возникновения эрозий имеют значение не только показатели рН контактирующих с поверностью зубов эрозирующих напитков, но и содержание в них ионов кальция, фосфата и фтора. Например, «критический» показатель рН, при котором может возникнуть эрозия эмали, может снижаться, если в напиток или продукт питания добавлен кальций.

Фториды замедляют деминерализацию

Многочисленные исследования документально подтвердили, что включение ионов фтора в состав неорганического компонента эмали лишь незначительно уменьшает ее растворимость (Arends & Christoffersen, 1986; tenCate & Duijsters, 1983). Небольшие количества свободных ионов фтора в окружающей зуб жидкой среде замедляют деминерализацию эмали эффективнее, чем ионы фтора, входящие в состав твердых тканей зуба. Они имеют значительно более высокий потенциал защиты от кариеса, чем содержащийся в большом количестве в эмали зуба фторапатит (FAP). Ogaard и соавт., (1988) использовали для базисных экспериментов эмаль зубов акулы, состоящую почти из чистого фторапатита.

Здоровая эмаль зуба человека содержит по сравнению с эмалью зубов акулы значительно меньше ионов фтора, и они находятся преимущественно в самом наружном слое эмали. При содержании фторида в эмали зубов акулы в количестве 32 000 ppm, 99 % ионов OH– замещены на ионы фтора. В эмали зуба человека менее 5 % ионов OH– замещены на ионы фтора. На этапах вышеупомянутых исследований (Ogaard и соавт., 1988), проведенных In-situ, эмаль зубов акулы и эмаль зубов человека помещалась в съемную аппаратуру, дополнительно снабженную способствующими скоплению налета (бляшки) элементами. Как в тканях эмали зубов акулы, так и в тканях эмали зубов человека возникали кариозные поражения. При этом глубина поражения кариесом эмали акулы была немного меньше.

Результаты последующих исследований показали, что убыль неорганического компонента эмали человека была даже ниже, чем эмали акулы в тех случаях, когда объекты наблюдения ежедневно использовали ополаскиватели для полости рта с 0,2%-ным содержанием фторида натрия.

Таким образом было подтверждено предположение о том, что растворенные в окружающей ткани зуба жидкой среде ионы фтора играют большую роль в профилактике кариеса, чем ионы фтора, входящие в состав кристаллов эмали зуба. Ионы фтора частично адсорбируются на поверхности кристаллов эмалевых призм и находятся в динамическом равновесии с фторидами, растворенными в непосредственном окружении эмали зуба. В результате этого поддерживается равновесие в окружающей кристаллы эмалевых призм жидкости или ее перенасыщение фтор(гидрокси)апатитом, а следовательно, репрeципитация неорганического компонента эмали. Адсорбция фторидов на поверхности кристалла также способствует непосредственной защите от деминерализации. В участках, где отсутствует фторид, возможно локальное растворение кристаллов эмалевых призм при кислотной «атаке».

Небольшое повышение концентрации ионов фтора может также наблюдаться после приема подсоленной пищи. В таком случае концентрация ионов фтора в слюне значительно повышается в течение примерно 30 мин. (Hedman и соавт., 2006). Фторирование поваренной соли и питьевой воды имеет аналогичный механизм действия. Мало вероятно, что при таких незначительных концентрациях фтора и при низком показателе рН среды, образуется фторид кальция (CaF2).

Фторид кальция (CaF2)

Большую роль в профилактике кариеса играет фторид кальция (рис. 1) , а точнее, подобный ему по составу преципитат, образующийся на поверхности зуба после применения фторсодержащих препаратов.

Рис. 1. Образование и распад подобного фториду кальция материала (в модификации по R?lla & Saxegaard, 1990).

Рис. 1. Образование и распад подобного фториду кальция материала (в модификации по R?lla & Saxegaard, 1990).

Кальций может поступать либо из слюны, либо при нанесении слабокислых фторсодержащих средств, а также частично из тканей зуба (Saxegaard & R?lla, 1989; Larsen & Richards 2001).

Не разрушая входящий в структуру минеральной части эмали зуба фторид, этот преципитат может отделяться от поверхности эмали зуба при помощи гидроксида калия. Поэтому его также называют КОН-растворимым фторидом (Caslavska и соавт., 1975).

При проведении исследований In vitro кратковременное нанесение нейтральных фторсодержащих препаратов приводит к образованию фторида кальция лишь в незначительном количестве. Значительное большие количества фторида кальция определяются в тех случаях, когда имеются начальные кариозные изменения эмали зуба (Hellwig и соавт., 1987; Bruun & Givskov, 1991).

При проведении систематических исследований Saxegaard & R?lla (1988) установили, что повышение образование фторида кальция наблюдалось в следующих ситуациях:

  • снижение показателя рН фторсодержащих растворов;
  • повышение концентрации ионов фтора;
  • более длительное время воздействия;
  • протравливание эмали кислотой;
  • дополнительное снабжение кальцием.

При нанесении растворов с нейтральной реакцией рН in vitro, образование фторида кальция начинает происходить лишь тогда, когда концентрация ионов фтора достигает примерно 300 ppm. При снижении показателя рН до 5 для спонтанного образования преципитата из фторида кальция достаточно концентрации ионов фтора 100 ppm (Larsen & Jensen, 1994). Эти сведения послужили стимулом для целенаправленной разработки средств для проведения местного фторирования. В результате применения таких средств уже после относительно кратковременного контакта с эмалью зуба на ее поверхности образуется фторид кальция.

При рассмотрении фторида кальция с помощью растрового электронного микроскопа определяются шаровидные образования (глобулы), количество и размеры которых могут варьировать. При применении растворов аминофторидов со смещением реакции среды в кислую сторону образование глобул фторида начинается уже через 20 сек., при применении подкисленного раствора фторида натрия — немного позже.

При исследованиях in vitro с использованием монофторфосфата натрия (MFP) образования фторида кальция не происходило (Petzold, 2001). В монофторфосфате натрия между ионами фтора существует ковалентная связь. Поэтому для реакции в полости рта с ионами кальция необходимо, чтобы ионы фтора высвободились в результате гидролиза.

При исследованиях, проведенных Hellwig и соавт. (1990), после применения зубной пасты с низким содержанием аминофторида (250 ppm), в отличие от применения зубных паст с монофторфосфатом, на поверхности эмали обнаруживалось заметное количество КОН-растворимого фторида.

При проведении исследований In-situ сравнивали эффективность применения зубных паст, содержащих фториды натрия (с нейтральными показателями рН), и зубных паст с аминофторидами (с показателем рН 5,5). Результаты этих исследований показали, что смещение реакции среды в кислую сторону (аминофториды) стимулировало образование фторида кальция. В тех случаях, когда в течение четырех недель применялись пасты, содержащие аминофториды, были отмечены значительно болеее высокие показатели образования фторида кальция на поверхности эмали (Klimek и соавт., 1998).

In vivo чистый фторид кальция не образуется, поскольку откладываются также фосфаты, протеины и другие вещества, входящие в состав эмали зуба. За счет этого преципитат становится более стабильным и устойчивым к воздействию кислот. Стабильность прежде всего достигается за счет адсорбции ионов НPO42– на поверхности кристаллов фторида кальция, т. е. образуется защитный слой, замедляющий их растворение. В связи с пониженной концентрацией ионов НPO42– при смещении показателя рН в кислую сторону при кариесогенной кислотной «атаке» из депо фторида кальция выделяются ионы фтора.

Таким образом, фторид кальция выступает в роли резервуара ионов фтора, который регулируется показателями рН среды: при кислотной «атаке» или при смещении реакции среды в кислую сторону выделяются ионы фтора, а при нейтральной реакции среды фторид кальция остается более длительно в стабильном состоянии на поверхности эмали зуба (R?lla & Ekstrand, 1996). Таким образом, фторид кальция служит основным поставщиком свободных ионов фтора при кислотной «атаке».

Выделяющиеся ионы фтора, с одной стороны, замедляют деминерализацию, а с другой стороны, стимулируют реминерализацию твердых тканей зуба. Они играют значительно большую роль в защите от кариесогенного воздействия, чем высокое содержание ионов фтора в кристаллах эмалевых призм (Fejerskov и соавт., 1981).

Поскольку слюна недостаточно насыщена фторидом кальция, его слой на поверхности эмали сохраняется недолго. Большая часть слоя теряется в первые часы или дни после нанесения фторсодержащих средств. При взятии биопсии эмали зуба после нанесения высококонцентрированных фторсодержащих растворов с кислой реакций среды после предварительного воздействия кислоты на поверхность эмали (протравливания) значительные количества фторида кальция все еще определялись через 6 недель, а через 18 месяцев — лишь небольшие количества фторида кальция (Caslavska и соавт., 1991).

При исследованиях in situ после одноразового местного нанесения концентрированного фторсодержащего препарата через 5 дней отмечалась потеря 80 % фторида кальция (Attin и соавт., 1995). При проведении этих, а также других исследований было отмечено следующее явление: при начальных кариозных поражениях эмали помимо потери фторида кальция повышается содержание входящих в структуру эмали ионов фтора (Hellwig и соавт., 1989; Buchalla и соавт., 2002).

Растворение слоя фторида кальция также приводит к повышению концентрации фторидов в слюне и зубной бляшке. Такое повышение концентрации фторидов способствует профилактике кариеса. Кроме того, было установлено, что через два часа после применения зубных паст, содержащих фторид натрия или аминофторид, сохраняется повышенная концентрация ионов фтора в слюне (Issa & Toumba, 2004).

Таким образом, можно заключить, что если после проведения профессиональной чистки зубов нанести на их поверхность фторсодержащие средства, способствующие образованию фторида натрия, то при дальнейшем образовании микробной бляшки в ней будет содержаться больше ионов фтора, т. е. повысится уровень защиты твердых тканей зуба от деминерализации (Tenuta и соавт., 2008).

Фторид кальция, безусловно, является самым важным и, возможно, даже единственным продуктом реакции на поверхности твердых тканей зуба, который образуется после местного нанесения фторсодержаших средств (R?lla и соавт., 1993). Покрывающий поверхность эмали слой, содержащий фторид кальция, несомненно, играет особенно важную роль в профилактике кариеса, поскольку из этого слоя в зависимости от показателей рН среды выделяются ионы фтора.

Перевод Инны Бичегкуевой

Статья предоставлена журналом официального печатного органа Швейцарской ассоциации врачей-стоматологов (SSO) «Schweizer Monatsschrift f?r Zahnmedizin», № 11, 2012, стр. 1037—1042.

В современной стоматологии использование адгезивных агентов считается обязательным условием при пломбировании композитными материалами. Невыполнение или нарушение технологии применения адгезивной системы приводит к нарушению сцепления с тканями зуба, что может проявляться в виде постоперативной чувствительности, возникновения краевой щели, микробной инвазии, окрашивания границы «твердые ткани зуба — реставрация», развития рецидивного кариеса. Любой стоматолог, занимающийся эстетической реставрацией зубов, сталкивается с проблемой выбора простой в применении и клинически эффективной адгезивной системы.

В этой статье мы постараемся в доступной форме дать рекомендации по выбору адгезивных систем и основным правилам работы с ними на основании анализа зарубежных публикаций последних лет, собственного клинического опыта авторов, результатов проводимых нами оригинальных клинико-лабораторных исследований и экспериментов. Выбор такой тематики объясняется дефицитом в современной российской стоматологической литературе объективных научных данных по данной теме.

Несмотря на появление более простых в применении самопротравливающих адгезивов и самоадгезивных композитов, адгезивные системы 5-го поколения остаются самыми популярными у российских стоматологов. Нами в течение двух лет (июль 2011 — май 2013) было проведено анкетирование стоматологов в ряде городов России. Один из вопросов анкеты касался выбора поколения адгезивной системы. Результаты анкетирования приведены в диаграмме (рис. 1) .

Рис. 1. Какие адгезивные системы вы применяете в своей практике? (Результаты анкетирования).

Рис. 1. Какие адгезивные системы вы применяете в своей практике? (Результаты анкетирования).

Популярность адгезивов 5-го поколения мы объясняем несколькими причинами. С одной стороны, адгезивные системы, требующие проведения тотального протравливания, при правильной технике применения демонстрируют превосходные результаты как после выполнения реставрации, так и в отдаленные сроки.

С другой стороны, уровень кислотности самопротравилавающих систем недостаточно высок, при их применении происходит недостаточное протравливание эмали, что увеличивает риск образования «белой» линии после пломбирования и приводит к нарушению краевого прилегания в ближайшие сроки (рис. 2) .

Рис. 2. Нарушение краевого прилегания реставраций зубов 15 и 16 через год после пломбирования наногибридным самоадгезивным композитом.

Рис. 2. Нарушение краевого прилегания реставраций зубов 15 и 16 через год после пломбирования наногибридным самоадгезивным композитом.

К другим недостаткам самопротравливающих систем можно отнести чувствительность к условиям хранения, чрезвычайно выраженную активацию матриксных металлопротеиназ (MMP) в дентине и эндогенных ферментов, ответственных за деградацию гибридного слоя («отторжение» реставрации организмом человека) [1], недостаточную стабильность этих адгезивов даже в течение срока годности [2]. Многие клиницисты отмечают психологический дискомфорт из-за ощущения «пропущенного этапа» (тотальное протравливание) при адегезивной подготовке полости.

Достаточно подробно изучив и сравнив свойства различных поколений адгезивных систем, проанализировав данные литературы и выполнив ряд экспериментов самостоятельно, мы практически полностью отказались в своей работе от самопротравиливающих систем. Но и адгезивные системы 5-го поколения также далеко не идеальны. Их применение предусматривает многоступенчатую подготовку полости с соблюдением всех технологических нюансов на каждом ее этапе. Ошибки и погрешности в работе оказывают существенное влияние на результат и приводят к таким осложнениям, как постоперативная чувствительность и появление «белой» линии по краю реставрации. Скрупулезное отношение врача-стоматолога к каждому этапу адгезивной подготовки полости косвенно влияет на скорость деградации гибридного слоя, а следовательно, на срок службы реставрации. При этом следует помнить, что ряд правил работы данными адгезивными системами, к сожалению, не оговаривается в инструкциях фирм-производителей и вложенных в упаковку схемах-пиктограммах по использованию.

Не сравнивая между собой адгезивные системы 5-го поколения различных фирм-производителей и не углубляясь в теоретические тонкости, мы хотим подробно обсудить основные правила работы с ними.

При работе современными светоотверджаемыми материалами стоматологу следует учитывать, что на процесс их полимеризации оказывают существенное влияние активные соединения кислорода и хлора. Поэтому для медикаментозной обработки полости не следует применять перекись водорода и гипохлорит натрия. Оптимальным препаратом при работе современными светоотверждаемыми материалами является водный раствор хлоргексидина. Наиболее удобно, по нашему мнению, использовать для этих целей 2%-ный водный растор хлоргексидина биглюконата [3]. Препарат наносится на все стенки и дно кариозной полости кисточкой-канюлей (рис. 3) .

Рис. 3. Медикаментозная обработка кариозной полости перед пломбированием.

Рис. 3. Медикаментозная обработка кариозной полости перед пломбированием.

После экспозиции 30—60 сек. он аккуратно раздувается и подсушивается воздухом. Смывать хлоргексидин не рекомендуется. После медикаментозной обработки производится протравливание эмали и дентина. Рекомендуемая экспозиция протравочного состава: на эмали — 15—30 сек. [4], на дентине — не более 15 сек. [5]. Нанесенную на ткани зуба кислоту мы рекомендуем втирать в эмаль. Не так давно было установлено, что простой аппликации кислоты на эмаль (так называемое статичное травление эмали) для качественного протравливания может быть недостаточно [6]. С одной стороны, это может быть связано со строением эмали. Нанесение кислоты на 15—30 сек. гарантированно обеспечивает качественное протравливание лишь внутренних, состоящих из эмалевых призм, участков. При этом протравливание наружных апризматических участков эмали происходит неравномерно. В результате на поверхности остаются островки непротравленной эмали, с которыми адгезив не взаимодействует (рис. 4) .

Рис. 4. Образование островков непротравленной эмали при статичном травлении (схема).

Рис. 4. Образование островков непротравленной эмали при статичном травлении (схема).

Это приводит к образованию микропространств, появлению «белой» линии, краевому прокрашиванию реставрации. Данная проблема достаточно актуальна при эстетическом пломбировании и критична при травлении эмали, не подвергшейся препарированию, так как в этой ситуации такие островки составляют большую часть поверхности бондинга. С другой стороны, недостаточное травление эмали кислотой может быть связано с неравномерным распределением протравочного геля, недостаточной его адаптацией к эмали. Втирание кислоты в эмаль также позволит решить эту проблему (рис. 5) .

Рис. 5. Равномерное протравливание эмали в результате динамического травления (схема).

Рис. 5. Равномерное протравливание эмали в результате динамического травления (схема).

Методика динамического травления подразумевает постоянное втирание протравливающего геля в поверхность эмали с помощью жесткой кисточки-аппликатора. При такой методике протравливания независимо от первоначальной структуры эмали достигается равномерная микрошероховатость ее поверхности (рис. 6) [7].

Рис. 6. Нанесение протравочного геля и втирание его в эмаль (динамическое травление).

Рис. 6. Нанесение протравочного геля и втирание его в эмаль (динамическое травление).

После протравливания полость промывается в течение 30 сек. водой и слегка подсушивается воздухом. Эмаль при этом должна стать матово-белой, а дентин остаться слегка влажным, «искрящимся» (рис. 7) .

Рис. 7. Вид протравленных и подсушенных тканей зуба.

Рис. 7. Вид протравленных и подсушенных тканей зуба.

В результате правильно проведенной техники тотального протравливания поверхность эмали становится микрошероховатой, смазанный слой на поверхности дентина растворяется и полностью удаляется, поверхностные слои дентина деминерализуются, обнажаются коллагеновые волокна, раскрываются дентинные канальцы.

В последние годы в литературе появилась рекомендация наносить на протравленный дентин 2%-ный раствор хлогексидина на одну минуту перед аппликацией адгезива (рис. 8) [8].

Рис. 8. Повторное нанесение 2%-ного водного раствора хлоргексидина биглюконата на протравленный дентин.

Рис. 8. Повторное нанесение 2%-ного водного раствора хлоргексидина биглюконата на протравленный дентин.

После чего препарат не смывается, а подсушивается воздухом. Было установлено, что именно кислотное протравливание дентина активирует матриксные металлопротеиназы (MMP), ответственные за деградацию гибридного слоя [9], а хлоргексидин является их ингибитором [10]. В экспериментах in vivo доказано, что выполнение данного этапа может остановить клинически значимую деградацию гибридного слоя, по крайней мере, на 14 месяцев [11].

После подсушивания хлоргексидина на все протравленные ткани наносится адгезив (рис. 9) .

Рис. 9. Схема образования наноподтеканий: а — глубина деминерализации превышает глубину проникновения адгезива в ткани зуба; б — проникновение адгезива произошло на глубину деминерализации.

Рис. 9. Схема образования наноподтеканий: а — глубина деминерализации превышает глубину проникновения адгезива в ткани зуба; б — проникновение адгезива произошло на глубину деминерализации.

Важно помнить, что количество слоев адгезива определяется инструкцией фирмы-производителя, а не личными предпочтениями врача-стоматолога или «общими» рекомендациями врачей-консультантов или менеджеров стоматологической продукции. Существуют адгезивные системы, которые наносятся одним, двумя или тремя слоями. Изменение рекомендованного количества аппликаций как в сторону уменьшения, так и в сторону увеличения чревато такими осложнениями, как появление «белой» линии и постоперативной чувствительности. Нанесенный адгезив следует слегка втереть в протравленные ткани, и, перед тем как начать его высушивание, обязательно выдержать паузу в 15-20 сек. для профилактики наноподтеканий. В течение этого времени адгезив пропитывает ткани на всю глубину деминерализации (рис. 10) .

Рис. 10. Давление дентинной жидкости на гибридный слой (схема).

Рис. 10. Давление дентинной жидкости на гибридный слой (схема).

Высушивание адгезива является важнейшим этапом адгезивной подготовки полости, целью которого является полное удаление растворителя. Технологически этап выполняется достаточно просто: врач-стоматолог с расстояния 15—20 см слабой струей воздуха, постепенно сокращая расстояние до зуба, высушивает адгезив.

Не следует начинать высушивание адгезива с близкого расстояния или делать это сильной струей воздуха. Это может привести к разбрызгиванию адгезива, или к молниеносному испарению растворителя, которое приведет к перепаду осмотического давления в дентинных канальцах и травме одонтобластов. Правильное высушивание адгезива занимает примерно 30 сек., в результате которого стенки полости должны быть покрыты тонкой блестящей пленкой. Эта пленка не должна двигаться под действием струи воздуха. Затем адгезив полимеризуется светом активирующей лампы.

Следует помнить, что после полимеризации адгезива ток жидкости в дентинных канальцах не прекращается. Дентинная жидкость продолжает оказывать постоянное давление на сформированный гибридный слой (рис. 11) .

Рис. 11. Деформация гибридного слоя, возникающая в результате давления дентинной жидкости (схема).

Рис. 11. Деформация гибридного слоя, возникающая в результате давления дентинной жидкости (схема).

Причем этого давления (25—30 мм рт. ст.) достаточно, чтобы с течением времени деформировать и даже прорвать гибридный слой (рис. 12, 13)

Рис. 12. Прорыв гибридного слоя, возникающий в результате давления дентинной жидкости (схема).

Рис. 12. Прорыв гибридного слоя, возникающий в результате давления дентинной жидкости (схема).

Рис. 13. Prime & Bond® NT™ и XP Bond™ (DENTSPLY) — наполненные адгезивы 5-го поколения.

Рис. 13. Prime & Bond® NT™ и XP Bond™ (DENTSPLY) — наполненные адгезивы 5-го поколения.

[11]. Существует несколько способов стабилизации гибридного слоя: последовательная, а не параллельная адгезивная подготовка нескольких отпрепарированных зубов; нанесение на все стенки полости тонкого слоя текучего композита сразу после полимеризации адгезива и т. д. Наиболее надежный и эффективный способ — применение наполненных адгезивных систем, например Prime & Bond ® NT ™ и XP Bond ™ (рис. 14) .

Рис. 14. Результаты собственного эксперимента in vitro: a, b — многочисленные дефекты и неоднородность адгезивной пленки; c, d — пленка из наполненного адгезива сохранена на поверхности зуба, дефектов не обнаружено.

Рис. 14. Результаты собственного эксперимента in vitro: a, b — многочисленные дефекты и неоднородность адгезивной пленки; c, d — пленка
из наполненного адгезива сохранена на поверхности зуба, дефектов
не обнаружено.

Частицы наполнителя, включенные в состав адгезива, формируют более прочный гибридный слой, который может противодействовать давлению дентинной жидкости.

В тех случаях, когда стоматолог по тем или иным причинам предпочитает использование самопротравливающих систем, мы можем дать следующие рекомендации:

  • выбирать те адгезивные системы, которые не требуют специальных условий хранения и остаются стабильны в течение всего срока годности при комнатной температуре;
  • обязательно проводить медикаментозную обработку полости 2%-ным водным раствором хлоргексидина биглюконата с целью ингибирования матриксных металлопротеиназ в дентине;
  • проводить селективное травление эмали в сомнительных случаях или в эстетически значимой зоне для удаления смазанного слоя с эмали и улучшения сцепления адгезива с тканями зуба — профилактика образования «белой линии» в ближайшие сроки и «течи шва» в отдаленные.

Таким образом, адгезивная подготовка полости — сложный процесс, требующий от врача максимальной концентрации внимания, соблюдения всех технологических нюансов, теоретической подготовки, а также применения адекватной адгезивной системы.

По нашему мнению, в линейке адгезивных систем компании DENTSPLY реализованы наиболее современные научные тенденции и технологии. Все они формируют прочный, стабильный гибридный слой минимальной толщины, который обеспечивает отличный эстетический результат, надежное краевое прилегание и минимальный риск развития постоперативной чувствительности, что позволяет рекомендовать данные адгезивы для практических врачей-стоматологов.

Общеизвестно, что именно выбор подходящей адгезивной системы является одним их решающих факторов, влияющих на увеличение «срока службы» выполненной реставрации. Кроме этого, для надежной ретенции пломбы, предотвращения краевой проницаемости и профилактики вторичного кариеса восстановленного зуба большое значение имеют качество и правильное применение адгезивной системы перед заполнением полости пломбировочным материалом [2].

В последние годы врачи в большинстве случаев проводят реставрации зубов по адгезивной технологии. Однако, несмотря на то что на стоматологическом рынке существует огромное количество адгезивных систем, проблема обеспечения надежного и длительного соединения композиционных материалов с поверхностью зуба до сих пор решена не полностью [ 6 ] . Более того, врачам каждый раз приходится решать, а какую же адгезивную систему приобрести для работы?

Поэтому, обобщив данные литературы, а также результаты собственных наблюдений, авторы статьи хотят поделиться клиническими и технологическими особенностями использования различных поколений адгезивных систем.

На сегодняшний день существует 7 поколений адгезивных систем. На клиническом приеме применяются адгезивные системы начиная с 4-го поколения.

Наши зарубежные коллеги до сих пор в своей работе в основном используют адгезивные системы 4-го поколения, которые обеспечивают самую высокую адгезию композита к эмали и дентину. Они содержат три компонента: кондиционер, праймер и бонд-агент (адгезив).

Кондиционирование производится путем нанесения на поверхность эмали и дентина жидкости или геля, основу которых составляет 35—37%-ный раствор фосфорной кислоты (Николаев А. И., Цепов Л. М., 2007). Для тотального протравливания твердых тканей зуба мы используем гель «Вокоцид» ( Vococid , VOCO ), содержащий 35%-ную ортофосфорную кислоту. Он имеет оптимальную консистенцию, не растекается и окрашен в голубой цвет, что позволяет визуально контролировать его нанесение (рис. 1).

Рис. 1. Кондиционирование эмали и дентина при помощи геля «Вокоцид».

Очень важно, чтобы концентрация ортофосфорной кислоты находилась в пределах 30—40 %. Если концентрация кислоты меньше 30 %, то на эмали зуба откладывается труднорастворимый брушит (СаНРО 4 Х 2 Н 2 О). Это соединение плохо удаляется водяной струей и препятствует связыванию композита с эмалью зуба. Если концентрация кислоты превышает 40 %, то происходит быстрое осаждение кальцийфосфатных соединений, препятствующих кондиционированию эмали. Однако и при протравливании 30—40%-ной ортофосфорной кислотой происходит осаждение кальцийфосфата на эмаль. Кроме того, остаточные кислоты могут препятствовать связыванию адгезива с твердыми тканями зуба. Поэтому их обязательно нужно смывать водой (Чиликин В. Н., 2001).

После кондиционирования поверхности эмали и дентина на влажный дентин наносят праймер, который должен воздействовать достаточно долго (порядка 30 с) при одновременном стимулировании его проникновения вглубь дентина за счет чрезвычайно легких, осторожных «втирающих» движений (рис. 2). Затем с помощью потока сжатого воздуха необходимо осторожно удалить излишки растворителя. Обращаем ваше внимание на то, что полимеризация праймера не проводится!

Рис. 2. Нанесение праймера.

После этого наносят адгезив, который и представляет собой материал, обеспечивающий соединение композита и протравленной и/или обработанной праймером поверхности дентина. Проникновение адгезива в слои деминерализованного дентина, обработанные праймером, приводит к образованию гибридного слоя, а просачивание его в открытые дентинные канальцы — к образованию так называемых полимерных «пробок», благодаря чему и обеспечивается их герметизация (рис. 3). Для достижения максимальной глубины проникновения адгезива в слои деминерализованного дентина после его нанесения необходимо выдержать определенный промежуток времени (примерно 10 с), после чего удалить излишки растворителя и равномерно распределить адгезив по всей поверхности полости. Это позволяет исключить возможность образования в слое адгезива воздушных пузырей или других дефектов. Для того чтобы в максимально возможной степени компенсировать напряжения, возникающие в процессе усадки при полимеризации, перед нанесением материала осуществляют световую полимеризацию адгезивной системы.

Рис. 3. Нанесение адгезива.

На стоматологическом приеме мы используем адгезивную систему 4-го поколения «Солобонд Плюс» ( Solobond Plus , VOCO ). На наш взгляд, ее огромным преимуществом перед аналогами являются образование прочной связи композита с тканями зуба и эффект немедленного сцепления (композит приклеивается к бонду, а не к инструменту).

Еще одно достоинство такой системы состоит в том, что праймер, который представляет собой легко растекающийся и хорошо смачивающий протравленную поверхность раствор, выполняет только одну функцию, а именно — проникновение в пространственную структуру обнаженных коллагеновых волокон и образование переходного слоя, структура которого стабилизируется при последующем нанесении относительно более вязкого адгезива. Благодаря этому значительно повышается вероятность того, что адгезив достигнет самых глубоких участков деминерализованных слоев дентина и, следовательно, будет достигнута более высокая прочность адгезивного соединения ( Haller B ., Blunck U ., 2004).

В состав адгезивных систем 5-го поколения входят материалы, объединяющие в себе свойства праймера и адгезива, применяются они только в два этапа: протравливание и нанесение однокомпонентного адгезива. Напомним, что действие адгезивных систем 4-го и 5-го поколений основано на растворении и полном удалении «смазанного» слоя [3]. Интересен тот факт, что простой аппликации кислоты на эмаль (так называемое статическое травление эмали) для качественного протравливания недостаточно. Такой вид травления обеспечивает хорошее протравливание лишь внутренних, состоящих из эмалевых призм участков. При этом протравливание апризматических участков эмали происходит неравномерно. В результате на поверхности эмали остаются островки непротравленной эмали, с которыми адгезив не взаимодействует. Это приводит к образованию микропространств, появлению белой линии, краевому прокрашиванию реставрации. Данная проблема наиболее актуальна при эстетическом пломбировании и критична при травлении эмали, не подвергшейся препарированию: в такой ситуации эти островки составляют большую часть поверхности бондинга. Исходя из вышеизложенного, следует отдавать предпочтение динамическому травлению эмали, при котором подразумевается постоянное втирание протравливающего геля в поверхность эмали с помощью кисточки или аппликатора. При такой методике протравливания независимо от первоначальной структуры эмали достигается равномерная микрошероховатость ее поверхности [4].

Одним из популярных среди врачей адгезивов 5-го поколения является «Солобонд М» ( Solobond M , VOCO ). На наш взгляд, уникальное преимущество «Солобонд М» — его однократная аппликация на поверхность тканей зуба и быстрое высушивание под действием струи воздуха без образования «волн». Это означает сокращение этапов работы и, соответственно, экономию времени, а также экономию материала. Однокомпонентная система сводит до минимума источники ошибок, которые могут появляться при замешивании, и упрощает хранение. Кроме того, «Солобонд М» выпускается и в практичных унидозах — крошечных блистерах из алюминиевой фольги, содержащих капельку адгезива (рис. 4), достаточную для покрытия двух-трех небольших полостей (рис. 5).

Как показывает наш опыт клинического применения, «Солобонд М» обеспечивает надежную адгезию и краевое прилегание пломбы, сводит к минимуму риск развития постоперативной чувствительности. Он может быть рекомендован в качестве основной адгезивной системы в ежедневной работе врача-стоматолога.

Адгезивные системы 4-го и 5-го поколений можно применять в различных клинических ситуациях, но лучший результат они дают при выполнении сложных реставрационных работ, когда требуется получить максимальное сцепление композита с твердыми тканями зуба: полости IV , II класса, прямые композитные виниры (рис. 6—10).

Рис. 6. Исходная ситуация: зубы 1.1, 2.1, 2.2 — острая механическая травма. Рис. 7. Зубы 1.1, 2.1 и 2.2 после реставрации с использованием адгезивной системы «Солобонд М». Рис. 8. Зуб 4.7: исходная ситуация.
Рис. 9. Внесение адгезивной системы «Солобонд М». Рис. 10. Зуб 4.7 после реставрации.

Интересен тот факт, что в ходе долгосрочных исследований in vitro было установлено, что плотность краевого прилегания и прочность адгезии двухэтапных систем являются менее эффективными по сравнению с трехэтапными, для которых характерно раздельное нанесение праймера и адгезива.

Хотим обратить внимание на то, что нанесение адгезивных систем 4-го и 5-го поколений следует проводить при помощи апплицирующих движений. Кроме того, после кондиционирования и промывания твердых тканей зуба чаще всего врач проводит подсушивание дентина при помощи либо струи воздуха, либо ватных шариков, которые скручивает сам. Однако при этом происходит бактериальное загрязнение поверхности ватного шарика, так как врач перед этим не меняет перчатки. Поэтому мы рекомендуем проводить этап подсушивания дентина с помощью поролоновых губок «Пеле Тим», которые имеют различный размер и впитывают определенное количество влаги, при этом оставляя поверхность дентина достаточно увлажненной для создания полноценного гибридного слоя (рис. 11).

Рис. 11. Подсушивание дентина при помощи поролоновой губки «Пеле Тим».

В последнее время на стоматологическом приеме стали широко применяться самопротравливающие адгезивные системы 6-го и 7-го поколений. Преимуществом самопротравливающих адгезивных систем является то, что дентин протравливается неглубоко и не удаляются «пробки» в каналах. Очевидно, что их использование в большинстве случаев не сопровождается послеоперационной чувствительностью. Несмотря на то что гибридный слой тонок, прочность соединения адгезив-дентин является очень высокой [5—7].

Из адгезивных систем 6-го поколения мы используем «Футурабонд НР» ( Futurabond NR , VOCO ). Данные многолетних клинических испытаний продемонстрировали чрезвычайно высокие показатели силы сцепления «Футурабонд НР», которые сопоставимы с таковыми при использовании техники тотального травления. Содержащаяся в «Футурабонде НР» суперстабильная эмульсия из наночастиц, полученных по запатентованной технологии сол-гель ( Sol — gel ), позволяет наносить материал только одним слоем и фотополимеризовать в течение 10 секунд, что обеспечивает высокую прочность адгезии и необыкновенное удобство применения (рис. 12). Он экономит время, что особенно ценно в геронтологической и детской практике. «Футурабонд НР» выделяет фториды, которые предупреждают развитие «вторичного» кариеса.

Рис. 12. «Футурабонд НР».

Рис. 12. «Футурабонд НР».

Кроме того, самопротравливающие адгезивы идеально подходят для реставрации пришеечных дефектов твердых тканей зуба. Дело в том, что с течением времени в области дна дефекта происходит гиперминерализация (дентиновый склероз), приводящая к закрытию просвета дентинных канальцев кристаллами минералов, которые затрудняют доступ в эти участки адгезивных систем. Применение же самопротравливающих адгезивных систем позволяет трансформировать смазанный слой и одновременно декальцинировать поверхностный слой в области дефекта в сочетании с предварительным протравливанием границ скоса ортофосфорной кислотой (рис. 13—14).

Рис. 13. Зуб 2.3: исходная ситуация. Рис. 14. Зуб 2.3 после реставрации с использованием «Футурабонд НР».

Особый интерес для врачей представляет «Футурабонд ДЦ» — самопротравливающий адгезив двойного отверждения. Мы рекомендуем применять данную систему в таких клинических ситуациях, когда света фотополимеризатора недостаточно для полноценного просвечивания адгезива, например в труднодоступных участках: при фиксации стекловолоконных штифтов, виниров, вкладок и т. д. Если «Футурабонд ДЦ» полностью не просветится лампой, он в течение трех минут полимеризуется самостоятельно химическим путем (рис. 15).

Рис. 15. Внесение «Футурабонд ДЦ» перед фиксацией стекловолоконного штифта.

Рис. 15. Внесение «Футурабонд ДЦ» перед фиксацией стекловолоконного штифта.

Недавно на стоматологическом рынке появились новые адгезивы 7-го поколения «Футурабонд М+» и «Футурабонд У».

Преимуществом «Футурабонд М +» является то, что этот универсальный адгезив может применяться как для прямых, так и непрямых реставраций. Он обладает надежной адгезией к различным материалам, в том числе к металлу, оксиду циркония и алюминия, а также к силикатной керамике без дополнительного праймера.

«Футурабонд У» — универсальный адгезив двойного отверждения, который сочетается со всеми фотополимерными, самотвердеющими композитами, материалами двойного отверждения, а также обеспечивает прекрасное сцепление с металлом, оксидом циркония и алюминия, силикатной керамикой. Но главным его преимуществом является толерантность к влаге и отсутствие необходимости его хранения в холодильнике. Кроме того, в исследованиях Toru Nikaido et al . (2007, 2009) подтверждено, что функциональные мономеры самопротравливающих систем, имеющих химическую связь с гидроксиапатитом твердых тканей зуба, формируют непосредственно под полимерным гибридным слоем зону, устойчивую к кислотно-щелочному воздействию, из-за чего наряду с выделением фтора осуществляются десенситизирующий и кариесстатический эффекты. При использовании систем тотального протравливания образование резистентной к кислотно-щелочному воздействию зоны не наблюдается.

Обращаем ваше внимание на способ нанесения адгезивных систем 6-го и 7-го поколений: их следует тщательно втирать в твердые ткани зуба, для того чтобы произошла нейтрализация остаточной кислоты кристаллами гидроксиапатита.

В настоящее время бесспорным остается тот факт, что самопротравливающие адгезивы способны удалять слой биопленки с поверхности зуба менее эффективно, нежели ортофосфорная кислота в технике тотального травления. Поэтому при выборе адгезивной системы следует учитывать локализацию дефекта, С-фактор, возраст и т. п.

Следует отметить, что самая распространенная причина неудачи в достижении прочной связи между композитом и тканями зуба заключается в том, что врач отклоняется от руководства по применению того или иного адгезива. А ведь именно в руководстве перечислены как точный алгоритм клинического применения, так и ограничения, меры предосторожности и взаимодействие с другими материалами. Поэтому для высококачественного конечного результата гораздо большее значение имеет не выбор адгезивной системы, а тщательное соблюдение всех рекомендаций по технологии ее применения.

Основу для развития адгезивной стоматологии заложил Buonоcore в1955 г., который установил, что обработка эмали 85%-ной ортофосфорной кислотой в течение 30 с. улучшает сцепление с пломбировочным материалом. С этого момента стала разрабатываться концепция предварительной обработки зуба, т.е. адгезивной подготовки с целью получения прочной связи с тканями зуба.

Сравнительный анализ геля для травления твердых тканей зуба Продент36 (Целит) с аналогичными материалами зарубежных производителей

Эмаль является самой минерализованной тканью в организме человека, что важно учитывать при адгезивной подготовке. Химический состав эмали, по данным D. H. Pashly, B. Ciucchi, содержит неорганические вещества 86% (по объему), органические вещества 2% и воду 12%.

Первым этапом подготовки эмали является обработка поверхностного слоя эмали кислотой в течение определенного времени. В результате растворения неорганических веществ на поверхности эмали образуется микрорельеф в виде пор, канавок, бороздок глубиной до 25 мкм. Площадь контакта с поверхностью эмали за счет этого значительно увеличивается. Концентрация протравливающего геля с ортофосфорной кислотой, используемого в технике тотального протравливания, колеблется от 20 до 40 %, чаще всего используют 37%-ный гель ортофосфорной кислоты. Использование протравки с большей, чем 40%-ной концентрацией приводит к полному растворению поверхностного слоя эмали без образования микрорельефа, а протравки с меньшей, чем 20%-ной концентрацией — к недостаточному растворению поверхностного слоя эмали. В обоих случаях площадь контакта и сила сцепления адгезивной системы с эмалью будут значительно меньше, что может сказаться на долговечности реставрации. Долгое время стандартом считалась обработка эмали кислотой в течение 40–60 с., однако на сегодняшний день доказано, что для получения необходимого микрорельефа эмали достаточным является время протравливания в 15–30 с. Исключением являются пациенты с клиновидными дефектами, флюорозом зубов. Консистенция (гель, раствор) и цвет протравки определяют удобство в работе, контроль зоны протравливания и качество удаления протравливающего агента. Предпочтительнее применять протравку в виде геля с красителем. После смывания протравливающего агента эмаль высушивают. Следует избегать пересушивания эмали, проявляющегося явным побелением, т.к. это значительно повышает хрупкость поверхностных структур протравленной эмали. При нанесении бонда апликатором на такую поверхность микрорельеф эмали частично или полностью разрушается, что может значительно снизить силу сцепления. Эмаль после протравливания должна быть матовой без излишков влаги.

Гидрофобные мономеры, входящие в состав бонда, легко заполняют пространства микрорельефа эмали. После полимеризации бонда в поверхностном слое эмали образуется прочно с нею связанный, благодаря микроретенции, гибридный слой.

На современном стоматологическом рынке разными производителями представлено огромное количество гелей для травления твердых тканей зуба.

Нами был проведен сравнительный анализ гелей для травления эмали, результаты которого представлены в таблице 1.

ПроДент-36
(Целит, Россия)
Etchant
(3M ESPE)
Uni-Etch
(Юнидент, США)
Масса 7,5 г (5 мл) 3 мл 6 мл
Внешний вид Однородный гель,
голубого цвета,
непрозрачный
Однородный гель,
ярко синего цвета, непрозрачный
Однородный гель,
ярко синего цвета, непрозрачный
Плотность г/мл 1,48 1,5 1,46
Текучесть
0,1 г нагрузка 2,5 кг
45-50 26-28 30-32
Количество основного вещества
(ортофосфорная кислота), мас %
37 35 38,3
Смываемость водой + + +

Далее мы провели ряд исследований на удаленных зубах с использованием гелей для травления эмали разных производителей и с разной ценовой позицией. Для эксперимента мы использовали гели для травления эмали ПроДент-36 (Целит, Россия), Etchant (3M ESPE), Unietch (Юнидент, США). Образцы зубов для исследований были подготовлены следующим образом. Удаленные по ортодонтическим показаниям интактные зубы промывали в проточной воде, очищали от зубного налета, поверхность высушивали фильтровальной бумагой. Для чистоты эксперимента зубы распиливали на специализированной установке алмазным диском с водяным охлаждением в сагитальном направлении на 3 части. Далее каждая часть зуба (пришеечная область) покрывалась гелем для протравки. Образцы протравливали в течение 30-ти секунд, после протравливания все образцы промывали водой в течении одной минуты. После предварительной подготовки образцы напыляли золотом пробы 99,99 (JFS-1100E ION распыления, Japan), и ультраструктуру протравленной эмали оценивали под сканирующим электронным микроскопом (JEOL USA JSM-6610 А).

1. Результаты исследования

2. Для интерпретации результатов мы использовали классификацию типов протравливания эмали по Silverstone [6] и Galil, Wright [7] представленная в таблице 2.


3. Морфологические изменения образцов эмали обработанные гелями для травления ПроДент-36 (Целит, Россия), Etchant (3M ESPE), Unietch (Юнидент, США) представлены на рис. 1–3.

Рис.1. Образец эмали обработанный гелем для травления эмали ПроДент-36 (Целит, Россия)


Рис.2. Образец эмали обработанный гелем для травления эмали Etchant (3M ESPE)


Рис.3. Образец эмали обработанный гелем для травления эмали Unietch (Юнидент, США)


На рис.1 представлен образец эмали (пришеечная область) обработанный гелем для травления эмали ПроДент-36 (Целит, Россия). После 30ти секунд протравливания поверхностного слоя нерастворенный апризматический слой практически отсутствует, и эмалевая структура полностью обнажилась. Эмалевые призмы были протравлены преимущественно по II типу, хотя местами присутствовали участки, протравленные по I, V типу. После 30секундного протравливания поверхностного слоя образца представленного на рис. 3 (использовали гель для травления эмали Unietch (Юнидент, США) наблюдалось полное отсутствие апризматического слоя и выраженная картина растворения эмалевых призм по II, реже – по I типу.

На рис. 2 (образец обработан гелем для травления эмали Etchant (3M ESPE)) имели место кратерообразные углубления, частично обнажена призматическая структура, aпризматический слой растворен не полностью. Эмалевые призмы протравлены преимущественно по IV и V типу.

Проведенные исследования подтвердили возможность создания ретенционной структуры эмали зуба в результате кислотного протравливания гелями ПроДент-36 (Целит, Россия), Unietch (Юнидент, США), пригодной для фиксации композитных пломбировочных материалов. Однако неполное растворение плотного слоя апризматической эмали на поверхности зуба гелем для травления Etchant (3M ESPE) действительно может не обеспечить достаточного ретенционной структуры для фиксации композита.

Автор: Сарычева Ираида Николаевна, заведующая терапевтическим отделением Стоматологической поликлиники ВГМА, врач первой квалификационной категории, кандидат медицинских наук.

Основу для развития адгезивной стоматологии заложил Buonоcore в1955 г., который установил, что обработка эмали 85%-ной ортофосфорной кислотой в течение 30 с. улучшает сцепление с пломбировочным материалом. С этого момента стала разрабатываться концепция предварительной обработки зуба, т.е. адгезивной подготовки с целью получения прочной связи с тканями зуба.

Сравнительный анализ геля для травления твердых тканей зуба Продент36 (Целит) с аналогичными материалами зарубежных производителей

Эмаль является самой минерализованной тканью в организме человека, что важно учитывать при адгезивной подготовке. Химический состав эмали, по данным D. H. Pashly, B. Ciucchi, содержит неорганические вещества 86% (по объему), органические вещества 2% и воду 12%.

Первым этапом подготовки эмали является обработка поверхностного слоя эмали кислотой в течение определенного времени. В результате растворения неорганических веществ на поверхности эмали образуется микрорельеф в виде пор, канавок, бороздок глубиной до 25 мкм. Площадь контакта с поверхностью эмали за счет этого значительно увеличивается. Концентрация протравливающего геля с ортофосфорной кислотой, используемого в технике тотального протравливания, колеблется от 20 до 40 %, чаще всего используют 37%-ный гель ортофосфорной кислоты. Использование протравки с большей, чем 40%-ной концентрацией приводит к полному растворению поверхностного слоя эмали без образования микрорельефа, а протравки с меньшей, чем 20%-ной концентрацией — к недостаточному растворению поверхностного слоя эмали. В обоих случаях площадь контакта и сила сцепления адгезивной системы с эмалью будут значительно меньше, что может сказаться на долговечности реставрации. Долгое время стандартом считалась обработка эмали кислотой в течение 40–60 с., однако на сегодняшний день доказано, что для получения необходимого микрорельефа эмали достаточным является время протравливания в 15–30 с. Исключением являются пациенты с клиновидными дефектами, флюорозом зубов. Консистенция (гель, раствор) и цвет протравки определяют удобство в работе, контроль зоны протравливания и качество удаления протравливающего агента. Предпочтительнее применять протравку в виде геля с красителем. После смывания протравливающего агента эмаль высушивают. Следует избегать пересушивания эмали, проявляющегося явным побелением, т.к. это значительно повышает хрупкость поверхностных структур протравленной эмали. При нанесении бонда апликатором на такую поверхность микрорельеф эмали частично или полностью разрушается, что может значительно снизить силу сцепления. Эмаль после протравливания должна быть матовой без излишков влаги.

Гидрофобные мономеры, входящие в состав бонда, легко заполняют пространства микрорельефа эмали. После полимеризации бонда в поверхностном слое эмали образуется прочно с нею связанный, благодаря микроретенции, гибридный слой.

На современном стоматологическом рынке разными производителями представлено огромное количество гелей для травления твердых тканей зуба.

Нами был проведен сравнительный анализ гелей для травления эмали, результаты которого представлены в таблице 1.

ПроДент-36
(Целит, Россия)
Etchant
(3M ESPE)
Uni-Etch
(Юнидент, США)
Масса 7,5 г (5 мл) 3 мл 6 мл
Внешний вид Однородный гель,
голубого цвета,
непрозрачный
Однородный гель,
ярко синего цвета, непрозрачный
Однородный гель,
ярко синего цвета, непрозрачный
Плотность г/мл 1,48 1,5 1,46
Текучесть
0,1 г нагрузка 2,5 кг
45-50 26-28 30-32
Количество основного вещества
(ортофосфорная кислота), мас %
37 35 38,3
Смываемость водой + + +

Далее мы провели ряд исследований на удаленных зубах с использованием гелей для травления эмали разных производителей и с разной ценовой позицией. Для эксперимента мы использовали гели для травления эмали ПроДент-36 (Целит, Россия), Etchant (3M ESPE), Unietch (Юнидент, США). Образцы зубов для исследований были подготовлены следующим образом. Удаленные по ортодонтическим показаниям интактные зубы промывали в проточной воде, очищали от зубного налета, поверхность высушивали фильтровальной бумагой. Для чистоты эксперимента зубы распиливали на специализированной установке алмазным диском с водяным охлаждением в сагитальном направлении на 3 части. Далее каждая часть зуба (пришеечная область) покрывалась гелем для протравки. Образцы протравливали в течение 30-ти секунд, после протравливания все образцы промывали водой в течении одной минуты. После предварительной подготовки образцы напыляли золотом пробы 99,99 (JFS-1100E ION распыления, Japan), и ультраструктуру протравленной эмали оценивали под сканирующим электронным микроскопом (JEOL USA JSM-6610 А).

1. Результаты исследования

2. Для интерпретации результатов мы использовали классификацию типов протравливания эмали по Silverstone [6] и Galil, Wright [7] представленная в таблице 2.


3. Морфологические изменения образцов эмали обработанные гелями для травления ПроДент-36 (Целит, Россия), Etchant (3M ESPE), Unietch (Юнидент, США) представлены на рис. 1–3.

Рис.1. Образец эмали обработанный гелем для травления эмали ПроДент-36 (Целит, Россия)


Рис.2. Образец эмали обработанный гелем для травления эмали Etchant (3M ESPE)


Рис.3. Образец эмали обработанный гелем для травления эмали Unietch (Юнидент, США)


На рис.1 представлен образец эмали (пришеечная область) обработанный гелем для травления эмали ПроДент-36 (Целит, Россия). После 30ти секунд протравливания поверхностного слоя нерастворенный апризматический слой практически отсутствует, и эмалевая структура полностью обнажилась. Эмалевые призмы были протравлены преимущественно по II типу, хотя местами присутствовали участки, протравленные по I, V типу. После 30секундного протравливания поверхностного слоя образца представленного на рис. 3 (использовали гель для травления эмали Unietch (Юнидент, США) наблюдалось полное отсутствие апризматического слоя и выраженная картина растворения эмалевых призм по II, реже – по I типу.

На рис. 2 (образец обработан гелем для травления эмали Etchant (3M ESPE)) имели место кратерообразные углубления, частично обнажена призматическая структура, aпризматический слой растворен не полностью. Эмалевые призмы протравлены преимущественно по IV и V типу.

Проведенные исследования подтвердили возможность создания ретенционной структуры эмали зуба в результате кислотного протравливания гелями ПроДент-36 (Целит, Россия), Unietch (Юнидент, США), пригодной для фиксации композитных пломбировочных материалов. Однако неполное растворение плотного слоя апризматической эмали на поверхности зуба гелем для травления Etchant (3M ESPE) действительно может не обеспечить достаточного ретенционной структуры для фиксации композита.

Автор: Сарычева Ираида Николаевна, заведующая терапевтическим отделением Стоматологической поликлиники ВГМА, врач первой квалификационной категории, кандидат медицинских наук.

Читайте также: